Projecting the cost of ART in SA – approaches and uncertainties

Andrew Boulle and Susan Cleary

Infectious Disease Epidemiology Unit, Health Economics Unit School of Public Health and Family Medicine University of Cape Town

September 2004

Approach

 Perspectives from local costing and projection exercises

- Review of model components
 - Cape Town ARV Costing Model
 - GOALS Model
 - Resource Needs Model
 - PHRplus Model
 - 3x5 costing approach

Framework

Numbers

- ART need
- ART uptake
- non-ART uptake
- ART survival
- Loss to follow-up

Costs

- Drugs
- Laboratory tests
- Opportunistic infections
- Programme-level
- Economic vs.
 financial

Clinical reality

- Model of care
- Regimen sequencing
- Protocol changes
- Failure

The Numbers - need

- Models mostly based on Stage IV (AIDS)
 - Median CD4 count of stage 4 ≈ 120/ul
 - Median CD4 count of those starting ART typically < 50 in early stages of programmes
 - CT model based on ASSA 2000 projections have undergone a major revision with latest model 2002
 assumes median survival similar to Uganda
 - Working backwards from mortality original ABT model DoH
 - Time to AIDS PHRplus
 - RNM / 3x5 symptomatic (? = AIDS) x access parameter

The Numbers - uptake

Uptake

- National task team set this at 50%, phased in over 5 years
- High level of uncertainty
- Uptake of all other services low PHC visits less than 2/capita, estimated minimum required for adequate package of care is 4.3

The Numbers – chronic HIV care

Non-ARV uptake

- In theory the most important secondary benefit of ART is chronic HIV care and VCT
- Services for this do not exist only VCT, and curative services, some offering CD4 counts

CT model

- 3 in care for every patient started - not based on any evidence

Khayelitsha

- equal number of visits for those on ART as for those not on ART, numbers in care not on ART at around 3 times those on ART

Alternatives

- lifetime costs based on all patient dying (GOALS)
- Incident OI's only based on prevalent HIV therefore for everyone
- Based on stage-specific costs with uptake parameter (original ABT project)

The Numbers – ART Survival

The Numbers – ART Survival ctd.

The Numbers – ART Survival ctd.

The Numbers – loss to follow-up

- Loss to follow-up: Unknown
- Khayelitsha
 - study found very little impact of changes to LTF and survival assumptions, but they have a big impact on overall programme costs

The Costs – drugs & laboratory tests

Source - 2004 UNAIDS Report

The Costs – chronic HIV care

- Original Markov modelling used precise clinical outcome measures, including estimates of incidence each OI
- Tradition in SA of National Health Accounts (NHA) and District Health Expenditure Reviews (DHER) – produce utilisation and per visit cost data
- Khayelitsha study demonstrated the difficulty in separating care episodes into disease episodes – made more sense to cost the care episodes
- Hospital work suggests inpatient care costs similar for medical patient and HIV medical patient
- OI approach tends to overestimate drug costs and position drug costs as the major cost driver
- Tuberculosis is an exception

The Costs – programme-level costs

What about

- The centre district co-ordinators, provincial/national implementation units
- Whole programme evaluation and sentinel surveillance
- Resistance testing
- Training
- Consultants and technical support
- Adherence support at community level not patient linked
- Social security?
- CT model provides three ways of calculating programme-level costs all are equally problematic
 - % of non-drug non-lab costs,
 - cost/person/year,
 - fixed amount.

The Costs – economic vs. financial

Rationale for economic costing

- Costing of HIV in abstraction, allows exceptional resources to be mobilised for HIV, whilst maintaining traditional resource-tracking and projections of other costs
- Rationale for financial costing
 - Useful to know the additional resources required
- Difficulties
 - HR anticipating efficiencies. Trade off of quality of care and efficiency
 - Capital expenditure economic costing underestimates short-term requirements

CT model

- Economic costing by including cost of space and capital in the per visit cost
- Provision for financial costs of infrastructure through programme-level interface
- No parameters for existing capacity

Clinical reality – model of care

- Hospital outpatient costs much higher, yet understandably the majority of accredited sites are hospitals
- Impact on patient retention of the model
- Different costs to the patient, including by-pass fees
- Relates to costing of non-ART HIV chronic care
- Relates to adherence support model
 - Treatment buddies
 - Treatment supporters
 - Stipend
 - Formally employed
 - Adherence counsellors

Clinical reality

regimen sequencing and failure

Change to second-line

- Original projections based on trial data of rate of viral rebound
- In reality, process of excluding adherence problems prior to switch takes much longer
- At 30 months in Khayelitsha, 25% of patients VL > 400, and only 12% on SLR

• Hybrid regimens

- Lactic acidosis only option is dual-protease inhibitor regimen with currently registered drugs
- Failure
 - Tempting to assume no VL on second-line, no third-line, and no drug after failure
 - Majority will remain on ART after failure plenty of evidence of continued benefit
 - Many clinicians will make a plan for service-adherent patients failing second-line

Modelling trade-offs

- Uncertainty surrounding future drug prices makes this level of precision unnecessary
- Clinicians like the tangibility and transparency of selecting regimens in the costing, and the drug projections can be used for tendering etc.

Clinical reality – protocol changes

• Example PMTCT

- Addition of new drugs imminent
- Tripple therapy will follow within a few years
- Drug price curve-balls
 - New drugs will offer new options with new trade-offs
 - Eg. Tenofivir WHO recommended second-line. Access price makes is attractive, but more expensive than current as no generic available or in the pipe-line

Third-line becomes a possibility with new drugs

- Temptation to individualise
- New data will emerge on structured interruptions, when to start etc.

Conclusion

- Economic evaluation and cost projections of ART involve many assumptions and uncertainty
- Uncertainty around uptake completely dwarfs any uncertainty around unit or per person costs
- Refinements in our estimates will not and should not affect the decision to provide ART
- Main value therefore is to assist planners
 - Month-by-month planning for conditional grant allocation
 - Integrated HIV/AIDS planning and projection against multiple conditional grants
 - Catalyst for encouraging comprehensive consideration of all aspects of the programme
 - Quality of technical support probably more important than the model